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Smoothed-particle method for phase separation in polymer mixtures
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We propose a numerical model of the dynamics of phase separation in polymer mixtures based upon the
generalized two-fluid model developed by Doi and OnLki Phys.(France Il 2, 1631 (1992] using the
method of smoothed-particle hydrodynamics. Our model is applicable to rheological studies of the phase-
separating systems. We present our simulation results on the kinetics of domain growth and the phase sepa-
ration under simple shear flow in two dimensions. We also discuss how the viscoelastic effect is incorporated
into our model [S1063-651X%97)06510-0

PACS numbds): 61.25.Hqg

I. INTRODUCTION Our model is also applicable to the rheology of phase-

Polymer mixture is a typical fluid system where phaseseparating systems. In this paper we demonstrate simulations

separation is observed. Many experimental observafibhs Under simple shear flow in a two-dimensional system.

support the universal nature of the domain grofh that In the_present study we ignore the viscoelastic ef_fect du.e
is, the algebraic growth law of the characteristic length ando the existence of the network stress of polymer chains. This

the dynamic scaling for the structure factor. Various numeri-£ffect will become important in dynamically asymmetric sys-
cal approaches have been made for this problem in the laf¢ms such as polymer solutioi$6]. We discuss how to
decadg3-5]. Most of the numerical models are based uponincorporate the viscqelastic effect into our model in Sec. I_V.
the so-called modet of critical dynamicg6], or its variants |t should be emphasized that our approach does not restrict a
which describe the dynamics of binary fluids. The cell dy-Problem to dynamics of polymer systems, but can be applied
namical system(CDS) method[7,8] provides an efficient {0 general binary fluid systems. In the pres_ent study, specific
way for the numerical simulations of the phase-separatiofi€atures of polymer systems are taken into account only
phenomena, and extensive studies have been made using tHisough the transport coefficients, and the Ginzburg-Landau
method[3,4]. On the other hand, the molecular-dynamicsfreée energy is used rather than the Flory-Huggins free en-
method, which intrinsically involves hydrodynamics, has€rgy. This may be justified at a temperature close to the
also been applied to the phase-separation phenof@ehd. C”UCE}| point. . .
However, since we are interested in the phase separation This paper is organized as follows. In Sec. Il we briefly
which occurs in macroscopic scales compared with a moteview the two-fluid model, and construct our numerical
lecular scale, it is difficult to obtain reasonable results aboufnodel in the absence of the elastic force. In Sec. Ill we carry
the macroscopic-phase separation phenomena of compl@kt computer simulations. First, the domain growth problem
fluids such as polymers by means of molecular-dynamics studied in two dimensions. Next, our model is applied to
simulations. the dynamics of phase separation under simple shear flow in

In this paper we propose an alternative numerical mode!V\{O dimensions. In Sec. IV we sgmmarize resul_ts obtaineq in
to describe the dynamics of phase separation in fluids baséhis study, and discuss a possible model which takes into
upon the generalized two-fluid model developed by Doi andccount the viscoelastic effect for polymer solution systems.
Onuki[11], which reduces to the modEl in some limit(see
Sec. ). Our model is constructed based upon Lagrangian
description of fluid rather than Eulerian one using the tech- Il. MODEL
nigue of smoothed-particle hydrodynami¢€SPH method
[12]. In the SPH method “fluid particles” are sampled from
the density field of fluid through a “smoothing function.” The two-fluid model was introduced by several authors as
This procedure transforms the hydrodynamic partial differ-a phenomenological model to describe the dynamics of poly-
ential equations into a set of ordinary differential equationsner solutiong17-21]. Doi and Onuki 11] generalized it for
that is, equations of motion of particles. We apply thismixtures of polymer melts consisting of two kinds of poly-
method to the two-fluid model. Thus the hydrodynamic ef-mers with molecular weights1, andMg. Their model in-
fects are fully taken into account in our model. cludes the case of polymer solutions in the lifdig<M, .

It is interesting to study rheological properties of phase-This model allows us to describe the dynamics of a quenched
separating systems where growing domains exist. Ohtsgystem into the spinodal region, that is, the dynamics of
Nozaki, and Doi[13] performed computer simulations of phase separation. We give a brief review of this generalized
phase separation under shear flow by means of the CD®vo-fluid model below.
method with no hydrodynamic interactions, and discussed Consider a mixture of two different kinds of polyme#s
the relation between rheological properties and domain morand B with degrees of polymerizatioN, andNg, respec-
phology. A phenomenological study including the hydrody-tively. The system is assumed to be isothermal. In the two-
namics was also done by Doi and OHt#4]. Olson and fluid model, the local mass densipy and the local velocity
Rothman[15] applied the lattice-gas model to this problem. vy of polymers, whereX=A or B, obey the following hy-

A. Two-fluid model
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drodynamic equations including friction force terms causedespectively. In the case of polymer mixtures, local velocity

by the relative motion betweef andB polymers: v in Eq. (7) should be replaced by the tube velocity intro-
duced by Brochardi17], which is given by a linear combi-
%: SV (pyvy) (1) nation ofv, andvg. Equations(1)—(7) give a closed set of
ot Px¥x)s equations fof ¢} and{vy} if the relaxation functiorG(t)
or an appropriate constitutive equation are given.
Dvyx When the relative velocity,— Vg is small compared with
Px ot ~ $xV-ox— {(vx—vy) +Fx, @ the average velocity and its time derivative is negligible,

Egs. (1) and (2) are reduced to the hydrodynamic equation
where the variables with indicesandY are for theA andB for v and the diffusion equation fap, (or ¢g),
polymers; the time derivativeD/Dt is defined as
(alat) +vx-V; ¢y is the local volume fraction of polymepé Y oF m
which is assumed to be equal to the mass fraction, that is, PDt ~ —(da- ¢B)VF¢A+V'[H+‘T I’ ®
dx=px!p, wherep=p,+ pg is the total densitywy is the
stress tensor{ is the friction coefficient which generally

d 2 SoF
depends omnpy ; Fy is the extra force due to polymer net- ﬂ: —V-(pav)+V _¢f\¢é). V——gV-o"|,
works. The stress tensery consists of the chemical poten- at 4 S 9
tial and the viscous stress tensor ©
ox=—(p+ ux) 1+ 7[(VV) + (V) T], 3 where II=—p1+ [ (Vv)+(Vv) '], and g is the coupling

constant between diffusion and elastic stress which is given
where uy is the chemical potential given by the relation by
ux= OF/ ¢y with the total free energ¥, 1 is the unit ten-
sor, 7 is the shear viscosityy= ¢,Va+ ¢gVg is the local 1 [ la I8
average velocity of the total fluid, Vi) and (Vv)T are the 9= AN ¢_B>
velocity gradient tensor and its transpose, respectivelypand
is the pressure which ensures the incompressibility conditionf N,=Ng and {oa={og, theng vanishes. In such a case,
V-v=0 for the total fluid. The friction coefficien is given e can expect that the elastic stress plays no important roles.

(10

by [11] Note that Egs(8) and (9) do not give a complete set of
equations fov and¢, becauser™ generally depends or,
= {alB 4) andvg, and cannot be expressed in termsvaind ¢, . In
{at s’ the absence ob(" these equations are almost the same

equations of the dynamical model for a critical binary fluid,
the so-called modeH [6], which has extensively been stud-
ied by many researchers, as mentioned in Sec. I.

with

Nx
§><Z¢><N_§ox (X=A,B), 5
e B. Numerical model

whereN, is the degree of polymerization between entangle- There are many numerical methods to solve the hydrody-
ment points, andx is the microscopic friction constant of namic equationgl), (2), and (7). Here we adopt the La-
polymer X. The extra forceFy is related to the network grangian description of fluid dynamics rather than a Eulerian
stresso™ which originates from the conformational entropy description to construct a model. One of numerical methods
of polymer chains, based on the Lagrangian description is known as SP2Hor
smoothed-particle applied mechanj@®]. This method was
Ix V. o0 5 used for some problems in astrophysick?]. Recently,
(At (s o ®) Posch, Hoover, and Kurf23] discussed a connection with
molecular dynamics, and applied to the transport problem in
The stress tensar™ generally depends on the past history Rayleigh-Beard convection. The Lagrangian description is
of the deformation. For a polymer solution, for exampt€?  also useful for some simulations of flows in viscoelastic ma-
would satisfy the following equation if the deformation is terials[24,25.

Fx:

spatially homogeneous, In the SPH method the smoothed densityr) of the
mass density(r) of fluid at positionr plays a fundamental
¢ X / : ) )
o(“):f 4t G(t—t')x(t") ) role. pg(r) is defined by using a smoothing functigv(r,h),
ry= | W(r—r',h)p(r")dr’. 11
where G(t) is the stress relaxation function in the linear p(r) f ( Jp(r) D

viscoelastic regime, ank(t) is the traceless part of the sym- _ _

metric velocity gradient tensor for the polymers at time The kernelW(r,h) has the following propertiefl2]:

that is, «(t)=(Vva)+(Vva) —5(V-va)1 in three-

dimensional spaceHereafter we use the suffixes and B f W(r,hydr=1, limW(r,h)=4(r). (12
for polymers and solvent in the polymer solution systems, h—0
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The parameteh defines the smoothing length of the kernel strict incompressible flow cannot be realized, and here we

W(r,h). A typical example ofW(r,h) is the Gaussian ker- consider anearly incompressibl8uid. Therefore, small spa-

nel, that is, tial variations ofp(r) should be allowed. We define the local
velocities of theA and B fluids, va(r) and vg(r), respec-

1 2.2 tively, as
— —r</h
W(r,h)= (th)dlze

VAD=3 T W(r—r; ),

whered is the spatial dimension. This smoothing function I PAj

defines a fluid element or a fluid particle with sizelf we

choose a set of random points,r,, .. . ,ry with a probabil- _ Mg . .

ity density which is proportional tp(r), we can evaluate the ve(r)= zn: ErnW(r fn:h), (7

integral in Eq.(11) with the Monte Carlo integration method,
where paj=pa(rj), pen=pe(rn), andfaz(d/dt)ra is the
velocity of particle«w. We also define the average velocity

N
ps(1)=2, MWr =1 h), 9 o,

wherem=(1/N) [ p(r)dr, andN is the total number of sam-
pling points. These sampling points are regarded as positions
of fluid particles having masm and sizeh. The physical
quantities(mass, momentum, and enejgyf the fluid are  wheremgz=mj, or mg for particle 3 of type A or B, respec-
transported by the motion of particles in the SPH. It may betively, andpz=p(r ).

reasonable to choose the correlation length of density fluc- To derive the equations of motion of particles, we con-
tuations as the particle size The density at the position of struct a Lagrangian and a dissipation function in terms of the
particlei is given byp;=p¢(r;). For a given fieldA(r), its  variables related to the particles. Although the elastic energy

mB.
= —r W(r—rg,h), 18
v(r) % L (r=rg,h) (18)

smoothed fieldAy(r) is given by which causes the extra force in E&) plays a crucial role in
dynamically asymmetric systemi$6] such as polymer solu-

N A(rj) tions, here we consider, as a first step, a system in which the

As(r):jzl mp—jW(r —rj,h). (19  elastic force dose not play any significant role. Such a system

is a polymer blend where the coupling constgrn Eq. (10)

With these expressions of field quantities, we can derive a s¢f@nishes as mentioned in Sec. Il A. We have also assumed

of equations of motion of the fluid particles from the hydro- that the system is isothermal. Thus we write the Lagrangian

dynamic partial differential equations. Note that the £ in the form

smoothed density given by E(L4) is differentiable, and the 1

gradient of density, for example, is expressed as a superpo- — r2_

sition of gradients of the kernédIW(r—r; ,h). For detailed . 2,8: M| 2"e Hog Pas:ap) | 19

procedures of deriving equations of motion of the patrticles,

see Ref[12]. where f(pg,bag.98p) is the thermodynamic potential or
Based upon the above picture of the fluid particles, weffee energy per unit mass andbag=paz/pg and

construct a model for polymer mixtures which will provide ¢sg=psp/pp are the mass fractions of the and B fluids,

an alternative expression of the two-fluid model described ifespectively.

Sec. Il A. Of course we can directly derive equations of mo- Since we are considering a nearly incompressible fluid,

tion from Egs.(1) and (2) through the formal procedure of We ignore the bulk viscosity of the total fluid. In this case,

SPH method. Here, however, we derive the equations of mdhe dissipation arises from Shearing motion of the fluid and

tion in some heuristic manner. Let us consider two kinds ofthe “friction” between the two fluids, which is a feature of

particlesA andB whose positions arfr;} (i=1,2, ... Na) the two-fluid model. Hence the dissipation functi@b is

and{r} (m=1,2,... Ng), respectively, wherg/, andNy  given by

are the total number & andB particles, respectively. Here-

i dinaai m e m
aftef we use the !ndlcelsj, ... .andm,n, ... for_A andB RzE _BnDﬁ:D,BJr _2 —'Bfﬁ(VA—VB)z, (20)
particles, respectively, and, 3, ... for any particles. The B Pg 2 pg
densitiespA(r) andpg(r) of the A andB fluids, respectively,
are given by whereDy; is the traceless part of symmetric velocity gradient
N N tensor%[(Vv)p—(Vv)Z], {s={(¢p), and (- - -)z denotes an
A B

estimation of a field quantity at;. Here we have assumed
PA(T)=Z1 maAW(r —r;,h), PB(r)=nZl mgW(r—rq,h), that both the two polymer meltd and B have the same
= N (16) viscosity . The velocity gradient tensor and the difference

of velocities betweer\ andB fluids are written, in the par-

wherema= M, /N, andmg=Mg /Ny, with the total mass ticle system, as

M, and Mg of the A and B fluids in the whole system, m

respectively. The total density ?s given by (Vv)azz —ﬁ(f,e—fa)VaWaﬁ, (21)

p(r)=pa(r)+pg(r). It must be noted that in our model the B Pa
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My. mg. portant for the systems of polymer solutiof6], here we
(VA= VB)a= 2 —1 Wy — > —1W,,, (22  use the symmetric Ginzburg-Landau-type free energy, which
I Paj n Pen leads to
where W,z;=W(r,—rg,h) and V,W,z=(3/dr,)W,gz.
Note thatV, W,z is given by —2(r,—rz)W,z/h? for the
Gaussian kernelV, ;. In actual simulationsp, in Eq. (21)  where S=¢,— ¢ is the order parameter ang, is that
is replaced bypalgE%(pa-i-pB) for a symmetrical reason evaluated at,, € is the quench depth, and and K are
[12,27. positive constants. Since we are considering nearly incom-
From Egs.(19) and (20), we can derive the equation of pressible  fluids, we use the  approximation
motion of particlea in the form of the usual Euler-Lagrange (V2S);=2(V?p,)i/p; and the following expression for the

Ka=—€S,+US,—K(V?9),, (28)

equation in the presence of dissipation, Laplacian:
Ma
4oL £ IR_g 23 (V2= “2[(Vouw;~ (Vpa)]- Vi, (29)
dtor, e or, I Pai
with

The first term in Eq(23) yields the acceleration term,r
wherer ,=(d?/dt?)r,. The second one is a potential force

that may be written by (Voa)i= 2 mMAViWj , (30)
LS ( af ) Ipp ( ot ot ) Ippg where the identityp,V2pa=V-(paVpa) — (Vpa)? is used.
are G Flldp o \0fa ddg), oy | In Eqg. (29) pa; is replaced bypaj;=3(pai+paj) in actual

(29 simulations for the same reason as before. For numerical

. A _ calculations, it is convenient to use the variabigs=p,, Or
where the conditiong,+ ¢g=1 is used. Noting that ps, for particle @ of type A or B, respectively, and

_ 2 .
(9119p) 5=Pp/pj, from Eqs.(16) and (24) we obtain S.,=2c,/p,—1. Using these variableg,,; appeared in Eq.

(25) which represents the potential interaction between par-
VoWeg, ticles « and 8 written by

&E_

- — 2;;: m,mg

pa+lu’aﬁ + p,8+lu‘ﬂa
ar,,

2 2
Pa pﬁ

(25) Map™ Gaﬂl&’a ' (31)

where u,g=u, or —u, for particle g of type A or B,
respectively, angk, is the chemical potential per unit vol-
ume of particlea defined by

wherep,,=—€S,+uS —K(V295),, ande,; takes 1 or—1
according whether particles and 8 are the same type or
not, respectively. As one can see from E@b) and(28) or

1 of of (31), the interaction forces between particles depend on the
Ba==Pa (_) _(_) } (26)  densities or the order parameters at their points. That is a
2 Idal, \dds/, different point from usual molecular-dynamics simulations.

) o ] Calculations of the last term in E@23) are straightfor-
andp,, is an estimation of the pressure figi(r) for the total  \yard. Making use of the propertiesV, ;=W,, and

fluid at the pointr=r,. In the two-fluid model the pressure v \y 5= —V,Wg,, we finally obtain the following equa-
p is determined to keep the incompressibiftyv=0. In our  tions of motion of particles:

scheme, however, the strict incompressibility cannot be sat-

isfied, and we regard the pressure as a penalty for the incom- ) Cup Opa

pressibility. Adiabatic approximations using Poisson’s rela- ra=2 Mgl —-+—| - VaWagp

tion pxp” with specific heat ratioy are often used in SPH A Poa  Pp

simulations for compressible flow. Here we use the similar

expression for the pressure. We choose the following simple — Mg _ W 32

form for the pressure, or penalty, function: +2,; PsCa £6(Va~Vve) sWea (32
Pu 2 where we take the minuglus) sign in front of the last term

Pa=Po| | =| —1|, (27)  in Eq. (32 for particle @ of type A (B), and the tensowr,,

p is defined by

where pg is a positive constant anﬂ_is the average mass O u5=—(Pa+ tap)1+27D,. (33

density. For the physical argument about possible form of

equation of state, see R¢R2]. This tensoreo,z is associated with the interaction between

Now we extend the model to incorporate the effect ofparticle @ and 8. The indexaB does not mean the tensor
spatial inhomogeneity ofp, or ¢g. We assume that the component. Equatiof32) corresponds to Eq2) in the ab-
chemical potential is derived from an appropriate free energgence ofF, and the continuity equatiofl) is automatically
functional F such as Flory—Huggins—de Gennes free energyatisfied in our model. The last term in Eq82) can be
[18]. Although asymmetry of the free-energy potential is im-simplified as
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% ?fagﬁ(VA_VB),BWﬁaz C_a(VA_VB)a (34

if the friction force {s(va—Vg)z and the density; do not
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Other parameters are determined as follows. We use the

Gaussian kernélV given by Eq.(13). The particle sizéh is

determined a®i=(V/A)¥=1, whereV is the total volume

of the system, and we s@f=N,=Ng. Note that the inter-

largely change in space. We use this expression in the folace Width,§E(R_/|6|)1/2, is unity in our system. The aver-

lowing simulations.

age mass density is set to be unity. Hence the particle mass

Note that our model is also applicable to low-molecularis given by my=®VIN,, mg=(1—P)V/INg, where

binary fluids if we set the friction coefficient, to be con-

d=[pa(r)dr/fp(r)dr is the total masgor volume fraction

stant. A feature of polymeric systems presents only in they A fluid. The pressurg, is now given by

dependence of,, on ¢, in our model.

lll. SIMULATIONS AND RESULTS

Po=Po(p2—1). (40)

In order to carry out numerical simulations we must write Recall that the pressurg, does not mean there are two
the equations of motion in dimensionless form. In this secdifferent pressure associated with and B particles, but

tion all physical quantities are scaled by uslggug, andpg

mean thatp,, is the pressure at the pointr,, .

which are units of length, velocity, and mass density, respec-

tively, and we use the same notations of the dimensionless
variables as their corresponding dimensionful variables. If

we scale the energy density by)u(z,, equations of motion
(32) now become

O, o-ﬁ a

2
Pg

B
> T

Fa:z mﬁ
7 p2

_ba
' Vawaﬁ_'_ ‘Ba (VA_ VB) ar
(39
with the dimensionless tensor

Oup=—(Pat pap)l+2R1D,. (36)

where approximatiori34) has been used? and®3 in Egs.
(35 and(36) are the dimensionless parameters defined as

_Zdo

_ pololo
polo’

R ”,‘B

37

where 7o={,N/N,, and {oa={og={, has been assumed,
so that/, in Eq. (35) is given by (@a¢g),. Our system is
controlled by these two parametefg. and 8~ ! represent

A. Domain growth kinetics

Now we numerically solve Eq$35)—(40) under the pe-
riodic boundary conditions. We carry out the simulation of a
two-dimensional system witi/= 10 000. The time integra-
tion is done by the fourth-order Runge-Kutta-Gill method
with a time stepAt=0.1. We have a cutoff length. for the
interaction range between particles, and here we se8.0.
Initial configurations are created a the following way. We
place A and B particles on a square lattice, and its dual
lattice, respectively, and randomize their positions using the
uniform random numbers with amplitude O(fhe lattice
spacing is unity. The velocities of each particle are set to be
zero. From this initial configuration we relax the system dur-
ing 100 time steps witle= — 0.5 to obtain a disordered state.
After this initial relaxation process we quench,tat0, the
system toe=0.5. We setpy,=2.0 in Eg.(40) so that the
nearly incompressible flow is realized. Indeed in the follow-
ing simulations the total mass density, satisfies
0.95<p,<1.05 for every particlex in any time except for
the initial relaxation process.

After the quench the linearly unstable fluctuation modes

strength of inertia and diffusion of the order parameter, ref@pidly grow, and domain structures emerge. This domain

spectively. Sinc€  is estimated ag,~L !, whereL is the
kinetic coefficient of polymers, ratio of the strength of the
above two effects is estimated as

|

whereR is the gyration radius of a polymer chain. Here we
have used the following estimationL~RéN/Ne in the rep-
tation dynamicg13,26. It should be noted thay should be
regarded as the viscosity of polymer melise same viscos-
ity of the bothA andB polymers are assumgdince we are

2Ne
W,

lo

Re (38

here considering the polymer blend. In the Rouse dynamic&l

the factor No/N in Eq. (38) is of order unity. Hence
RP~(Io/Rg)?>~1 if we chooselg~Rg. In this study we
consider the above situation. The chemical potential is a
sumed to be given by

o=~ €S, + S, —K(V?9),, (39)

and bothK and|e| are fixed at 0.5 in the present study.

pattern coarsens in time and the system evolves toward an
equilibrium two-phase coexistent state. Some snapshots of
the time-evolving pattern witth 1==1 and®=0.5 are
shown in Fig. 1. In these figures the mass densit diuid
is indicated by the gray scale, that is, bright or dark regions
correspond t&- or B-rich regions of the fluid, respectively.
Now we define a structure factb(k,t) as a quantitative
measure of the pattern evolution,

(0= (oK Opa(—k D) [ dK(pak Dpa(—k 1),
(41

herepa(k,t) is the Fourier component @f,(r) with wave
vectork at timet and(---) denotes the ensemble average

Sf_or initial configurations. Sincga(k,t)=pa(k)W(k) from

Eq. (16), whereW(k) andf)A(k) are the Fourier components
of W(r,h) and Z)A(r)EEijé(r—rj), respectively,l (k,t)
can be calculated by using the metHdd] which is familiar

in molecular dynamics simulations. However, we calculate it
by using fast Fourier transformation after mappipg(r)
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FIG. 2. Double-logarithmic plots df,(t), the first moment of
the structure factot(k,t). The symboldl, O, A, and & corre-
spond to the runs witlk~1=2.0, 1.0, 0.7, and 0.5, respectiveiy.
is fixed at 1.0 andb =0.5. Solid and dashed lines show the slopes
— 3 and — 3, respectively.

is inevitably affected by the inertia effect in the long-time
limit and z=$ in that regime, and that in two-dimensional
systems there is a crossover from the Brownian coagulation
regime ¢=3) to the inertia-controlled regimez& %). In
fact, at?® growth law has been obtained by the lattice-gas
model[32] in three dimensions, and several numerical stud-
ies in two-dimensional fluid systems have shown that —

2129,9,10. Since the paramet& ! controls the inertia, our
result agrees with Furukawa’'s prediction. However, the

Brownian coagulation mechanism fo¥? growth law is not

©) ® . | S no
appropriate here because there is no thermal noise in our
system.

FZIOG(I)E' SS'B%pShOtS gfdftgefdo;nhain Pa“e;"ﬁ‘? (@}5&(?'_;90 Next we examine the dynamic scaling for the structure
(), 200(d), 300(e), and 400(f). The mass density of the fluid is 601 1 1) We plotk?(t)1 (k,t) versusk/ky(t) in Fig. 3 at

shown by gray scales. Bright regions correspond to A-rich domains, .
R 1=P=1.0 andb=0.5. t=250, 300, 350, and 400 with symbdls, (1, ¢, andA,

respectively. These data are obtained by averaging over five

independent runs wittR~1=9=1.0. This figure suggests
given by Eq.(16) onto a square lattice because it takes lesshe existence of the dynamic scaling function
computation time. Here we use a £28juare lattice. F(X)Eki(m(k,t) with x=k/k,(t). To see the behavior of

The first momenk;,(t) of the circular averaged structure F(x) more precisely we show doubly logarithmic plots of
factor denoted byi(k,t) (k=|k|) defines a characteristic

wave number whose inverse gives the characteristic length

0.2 . . . .

[(t). In Fig. 2, doubly logarithmic plots ok,(t) for some | a
runs with different parameters are shown for the case of;
®=0.5. Squares, circles, triangles, and diamonds in this fig- R
ure correspond to the runs f&8 1=2.0, 1.0, 0.7, and 0.5, = s 9
respectivelysp is fixed at 1.0 for all runs. FOR~1=1.0 we § ©
observe the growth la, (t)~t~Z with z=1 asymptotically NS 01 B ]
(the solid line in Fig. 2 indicates the slope}). The expo- .y o 2
nent z increases asi ! decreases. In particular, for .
R~ 1=0.5, it seems that there is a crossover of the exponent 5 %
from z= 3 to § (the dashed line indicates the slop&). § Q;

It is believed that the characteristic lend{t) of the do- o ¢ . B D
mains linearly grows with time in the late stage, that is, 0 2 4

[(t)~t, in three-dimensional binary fluid systems, without
an inertia effect at critical quench where interconnected do-
mains with sharp interfaces are formgzi27,28,30. How-

k/kq(t)

FIG. 3. Scaling plots of the structure factdi(k,t) for

ever, Furukawdg30,31 predicted that the phase-separation®i~'=3=1.0 and®=0.5. The symbol€D, I, ¢, andA corre-
dynamics in fluid systems in both two and three dimensionspond tot= 250, 300, 350, and 400, respectively.
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FIG. 4. Double-logarithmic plots df (x) after hardening trans-
formation. The meanings of the symbols are the same as those in
Fig. 3.

F(x) in Fig. 4 (the meanings of the symbols are the same as
those in Fig. 3 Here we have used the data obtained after (b) (e)

“hardening” transformation [33] [pa(r)— 6(pa(r) —3),
6(- - -) is the step functiohto avoid the effect of finite thick-
ness of interfaces. We see thi#gtx) behaves likex* [34,35
for small x except for very smalk, where the finite system
size may have an effect, and there is a “shouldgs®] at
x=2-3. It appears that Porod’s laj87] [F(x)~x(@+1)]
holds for largex in the long time limit. Solid and dashed
lines in Fig. 4 show the slopes3 and 4, respectively. These
features ofF(x) are commonly observed in other computer
simulations [3,4] and experimentd38-4Q, although the
present simulation is in two dimensions and we cannot di- (© (®)

rectly compare with three-dimensional results.

In Fig. 5 we also show snapshots for the case of off- FIG. 5. Snapshots of the patterntat0 (a), 100 (b), 200 (c),
critical quench®=0.4, and®~1=9=1.0. In this case the 400 (d), 600 (e), and 800(f) for R *=P=1.0 andd=0.4. The
dropletlike pattern grows, and we observe a slower growthmass density oA fluid is shown by gray scales.
law with exponengz=3 (Fig. 6). The droplet growth mainly
occurs by the coalescence between droplets although we
observe the process of evaporation-condensation type. )
this time, however, it is not clear which mechanism of theEq. (35, andy is the shear rate.
droplet growth is relevant to the growth law in Fig. 6. The inhomogeneity of the order parameter causes the ex-

cess stress tens@', which is expressed 442,43,13,19

aﬁ%le a, respectivelyf,=(f.x,f,y) is the right-hand side of

B. Phase separation under shear flow

Our model can be applied to phase separation in the pres- ' '
ence of shear flow by employing the technique of nonequi- o0ak ° ]
librium molecular dynamic$41]. Here we use the so-called )
Sllod method[41] for simple shear in a two-dimensional
system with the Lees-Edwards boundary conditi¢Ag]. 0.2- ° ]

(The “Sllod” method is so named because of its close rela- = °
tionship to the Dolls tensor algorithinThe equations of mo- 3
tion are now written by
0.1+ —
0.08
araxzvax"_ray’yv &rayzvay’ (42) 0.07+ 7
0.06 7
d ~ _ - d _~ - 1 I1‘03
avaxzfax_vay’y' avay:fay! (43) 10
t
wherer ., (1 .y) andv . (v,y) are thex (y) component of FIG. 6. Double-logarithmic plot ok,(t) for 3~ 1=9=1.0 and

position and deviation of velocity from uniform shear of par- ®=0.4. The solid line shows the slopes.
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FIG. 7. Time evolution of the shear stress tensors at disordered
state €=—0.59=0.5).3, andX,, are plotted by the symbolS
and A, respectively, as functions of shear straipt for

y=1.0x10"2.

3= gf drvsvs (44)
K
- V% :—Z(VS) 5(VS)s. (45)

We monitor this quantity together with the viscous strB¥s

-1
S Y (46)
b oPe (© ®
The total stress tensor is given by the sum of these two stress
tensors apart from the isotropic term. The formula &g )
of the stress tensor is well known for binary fluid systems?t=0 @, 1.0 (b), 2.5 (¢), 5.0 (d), 7.5 (¢), and 10.0(f) for
with the Ginzburg-Landau-type free energy. A derivation of y=1.0x10"2 %™ *=9=1.0, and®=0.5.
the formula in our model is shown in the Appendix.
We first apply the shear flow at the disordered statehe shear stres§!(y in Fig. 10 and the normal stress
e=—05 and ®=0.5. We choose the parameters leELX—E'yy in Fig. 11 as functions of shear strain for
R 1=9P$=1.0, pp=5.0, N=10000, and y=1.0x10 2, 'y=0.01(circles), 0.02 (squarep and 0.04(diamonds, and
which is the same order as the characteristic velocity of paré=0.5. It is difficult to detect the asymptotic steady states in
ticles in the simulation without shear. In Fig.ELy (circles  this simulation. In particular, we observe a very slow mode
andXy, (squaresare plotted as a function of the shear strainjike a relaxational oscillation i), with y=1.0x10"2.
", WhereELV and EXV are wv components o' and¥V,  Such a behavior may be caused by the fact that several parts
respectively.3, is almost zero, andy, fluctuates around of domains simultaneously merge or coagulate induced by
the steady-state valwg~'y=1.0x 10~2 as expected. Indeed the .ﬂOW and fO”T‘ Iarge do”.‘a'“.s as a rgsult. However, this
the time-averaged value ofE;’y for 0=t<500 is qscﬂlatory behavior will vanish in the limit of large system
9.93+0.01x 103, size.
Next we impose the shear flow on the systems where the
macroscopic domains exist. We let the system grow for 1000 IV. SUMMARY AND DISCUSSION

time steps and apply the shear wijt=1.0x 102 at t=0.

FIG. 8. Snapshots of the system under simple shear flow at

N In this paper, we have constructed our numerical model
Some snapshots are shown in F|g_._8 r=0.5. We a]so applying the SPH method to the two-fluid model in the ab-
?hOW some snapshots for the off-critical cade<(0.4) with  gence of elastic force, and demonstrated the simulations for
y=1.0<10"? in Fig. 9. In this case we apply the shear afterthe domain growth kinetics and the rheology under simple
3000 time steps of the initial growth process. It is observedshear flow in two dimensions. We have obtained that the
in both cases®=0.5 and 0.4that the domains are broken dynamic exponent for the domain growth takes a value
and merge in large strain regimet(>1) as pointed out by close to3, and that there is a crossover of the exponent from
Ohta, Nozaki, and Dof13]. These topological changes of z=3to % in the low viscosity system. We have confirmed the
domains may cause large fluctuations of sttBssWe plot  dynamic scaling for the structure factor in our model sys-
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(a) (d)

(© ()

Tt

FIG. 11. Time evolution of the normal streNs as functions of
yt for y=1.0x 102 (circles, 2.0x 10~ 2 (square} and 4.0< 10 2
(diamondg. R~ 1=P=1.0 and®=0.5.

Our model has the advantage of describing macroscopic
phenomena of complex fluids with a reduced number of de-
grees of freedom compared with the molecular-dynamics
method. In addition, we can more easily incorporate external
flows into our model than on-lattice models such as the CDS
model with hydrodynamic interactions. We believe our
model is useful for rheological studies of phase-separating
systems, although our model is applicable only to fluid sys-
tems.

In the rest of this section, we discuss how to incorporate
the effect of the network stress into our model. As mentioned
in the preceding sections, for the dynamically asymmetric
systems the existence of the network stred8 which
causes various viscoelastic effects is essential and we cannot

FIG. 9. Snapshots of the system under simple shear flow aﬁeglect the last term in Eq2).

yt=0 (@), 1.0 (b), 2.5 (c), 5.0 (d), 7.5 (e), and 10.0(f) for
y=1.0x10 2, R 1=P=1.0, andd=0.4.

tems. For simulations under shear flow, we have observed

Here we consider a system of polymer solution, that is, a
polymers @ fluid) plus solvent B fluid) system, as a special
case. In this case the network stres®) acts only on the

lymers. Indeed the extra fordg, defined by Eq(6) be-

non-steady-state behavior of the excess stress tensor Willy 1asv. + or 0 for X=A or B, respectively, in the limit

large fluctuations caused by topological changes of the d

mains.

0.01

I
2y

0.005

Tt

FIG. 10. Time evolution of the shear streEg as functions of
yt for y=1.0x10"2 (circles, 2.0x 10~ 2 (squarek and 4.0< 10 2
(diamondg. R~ 1=9=1.0 andd=0.5.

Oaf N,>Ng. We can incorporate this extra-force term by

replacingo;; with o+ o™ in the equation of motiori32)

for A particlei, Whereai(“) is the network stress of particie

In order to complete our model, it must be supplemented by
an appropriate constitutive equation which describes time
evolution of (™. One of the simplest model for the consti-
tutive equation is the Maxwell model with a single relaxation
time. Such a constitutive equation may be expressed, in
terms of our model, as

d 1
qio oM+ (@Y 0|")T=— —0{"+2G D",
(47)

where QM= 1[(Vv,);—(Vva)] is the antisymmetric part

of the velocity gradient tensor, or vorticity tensor, fof at

r,, D is the traceless part of symmetric velocity gradient
tensor forv, atr;, andr and G, are the rheological relax-
ation time and the elastic shear modulus, respectively, both
of which generally depend o#, . The last two terms in the
left-hand side of Eq(47) come from the rigid body rotation
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of the A fluid. It is possible to solve numerically the equa- Now consider the total force acting on the system
tions for other constitutive model which may generally in- fdr(d/dt)(pv), wherepv is the momentum density. In our
clude time integrals for the history of each particle. Thus wemodel,
can directly simulate the dynamics of viscoelastic polymer
solutions.
pv= >, mr W(r—r,). (AB)
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J
APPENDIX J dr[ﬁ(pv)ﬂLV-(pVV)
In this appendix we derive the stress tenS6(Eq. (44)]
due to the inhomogeneity of the order parameter from the SF
equation of motior(Eq. (23)] of particles. Since the order = —f dr[p(r)v—-l-[pA(r)—pB(r)]V
parameter or its conjugate field are even under time reversal, Sp(r)

fluctuations of the order parameter contribute to the revers-
ible part of the stress tensor. The dissipative force term in
Eq. (23) does not affecE', which is a reversible part of the
stress tensor. Therefore, we may start from nondissipativ
dynamic equations given by

X

p(r) oS(r)
Biere we have used the properfydrW(r—r,)=1 and
PW=S m,r r W(r—r,).

SF If we assume the incompressibility, that ¥%p(r) =0, Eq.
=T G (A1) (A8) becomes

. (A8)

1 5F>

m_r

o

where F is the total free-energy functional. Whédn is a 9
functional of the density(r) and the order paramet&r) f dr[ﬁ(pv)ﬂLV (pvv)
which are given by

:—f dr[Vp+SVu],

(A9)
N=>mWr—r), A2 where p=p(8F/dp) is the pressure angg=56F/4S is the
p(n) Z, M =Te) (A2) chemical potential. The last term in E@\9) gives rise to the

excess stress tensor. When the chemical potential is derived
from Ginzburg-Landau-type free energy and can be written
S(r)=[pa(r) = pa(N1/p(r) =2 €,mW(r—r,)/p(r), in the form, u= (9f/9S) — KV2S, with some known function
“ (A3) f(S), the last term in Eq(A9) can be written as

f K
wheree,=1 if particle « is of A type, ande,= —1 other- SVu=V s&— —f—KSV23S— —|Vs|2 +KV-(VSVS).
wise, and Eq(ALl) is rewritten in the following form: IS 2 (AL0)

m

a

P op(r) oF  &S(r) oF The first term on the right-hand side of E&10) only con-
(o r + . (A4) ! ¢ . con
org ép(r)  or, oS(r) tributes to the isotropic term of the stress tensor, which is not
_ ~ of interest in incompressible flow and can be included in the
Heregfter we omit the segonq argument of the smoothln@ressure term. Equatiorid9) and (A10) imply that the ex-
function W(r —r,,h). Substituting Eqs(A2) and(A3) into  cess stress tensor is given BYKVSVS apart from the iso-
Eq. (A4), and integrating by parts, we obtain tropic term. Therefore, we obtain the stress tensor for the

whole the system
ma'r'az—f dr K
5p(1) S f drysvs, (A11)

( 1 F
+e,mW(r—r, )V m 5S(r)) . (A5)

oF
m,W(r—r,) Vp—

whereV is the total volume of the system.
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