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Smoothed-particle method for phase separation in polymer mixtures

Tohru Okuzono
Department of Physics, Ochanomizu University, Tokyo 112, Japan
~Received 10 July 1996; revised manuscript received 7 July 1997!

We propose a numerical model of the dynamics of phase separation in polymer mixtures based upon the
generalized two-fluid model developed by Doi and Onuki@J. Phys.~France! II 2, 1631 ~1992!# using the
method of smoothed-particle hydrodynamics. Our model is applicable to rheological studies of the phase-
separating systems. We present our simulation results on the kinetics of domain growth and the phase sepa-
ration under simple shear flow in two dimensions. We also discuss how the viscoelastic effect is incorporated
into our model.@S1063-651X~97!06510-0#

PACS number~s!: 61.25.Hq
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I. INTRODUCTION

Polymer mixture is a typical fluid system where pha
separation is observed. Many experimental observations@1#
support the universal nature of the domain growth@2#, that
is, the algebraic growth law of the characteristic length a
the dynamic scaling for the structure factor. Various nume
cal approaches have been made for this problem in the
decade@3–5#. Most of the numerical models are based up
the so-called modelH of critical dynamics@6#, or its variants
which describe the dynamics of binary fluids. The cell d
namical system~CDS! method @7,8# provides an efficient
way for the numerical simulations of the phase-separa
phenomena, and extensive studies have been made usin
method @3,4#. On the other hand, the molecular-dynam
method, which intrinsically involves hydrodynamics, h
also been applied to the phase-separation phenomena@9,10#.
However, since we are interested in the phase separa
which occurs in macroscopic scales compared with a m
lecular scale, it is difficult to obtain reasonable results ab
the macroscopic-phase separation phenomena of com
fluids such as polymers by means of molecular-dynam
simulations.

In this paper we propose an alternative numerical mo
to describe the dynamics of phase separation in fluids ba
upon the generalized two-fluid model developed by Doi a
Onuki @11#, which reduces to the modelH in some limit~see
Sec. II!. Our model is constructed based upon Lagrang
description of fluid rather than Eulerian one using the te
nique of smoothed-particle hydrodynamics~SPH! method
@12#. In the SPH method ‘‘fluid particles’’ are sampled fro
the density field of fluid through a ‘‘smoothing function.
This procedure transforms the hydrodynamic partial diff
ential equations into a set of ordinary differential equatio
that is, equations of motion of particles. We apply th
method to the two-fluid model. Thus the hydrodynamic
fects are fully taken into account in our model.

It is interesting to study rheological properties of pha
separating systems where growing domains exist. O
Nozaki, and Doi@13# performed computer simulations o
phase separation under shear flow by means of the C
method with no hydrodynamic interactions, and discus
the relation between rheological properties and domain m
phology. A phenomenological study including the hydrod
namics was also done by Doi and Ohta@14#. Olson and
Rothman@15# applied the lattice-gas model to this problem
561063-651X/97/56~4!/4416~11!/$10.00
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Our model is also applicable to the rheology of pha
separating systems. In this paper we demonstrate simula
under simple shear flow in a two-dimensional system.

In the present study we ignore the viscoelastic effect d
to the existence of the network stress of polymer chains. T
effect will become important in dynamically asymmetric sy
tems such as polymer solutions@16#. We discuss how to
incorporate the viscoelastic effect into our model in Sec.
It should be emphasized that our approach does not restr
problem to dynamics of polymer systems, but can be app
to general binary fluid systems. In the present study, spe
features of polymer systems are taken into account o
through the transport coefficients, and the Ginzburg-Lan
free energy is used rather than the Flory-Huggins free
ergy. This may be justified at a temperature close to
critical point.

This paper is organized as follows. In Sec. II we brie
review the two-fluid model, and construct our numeric
model in the absence of the elastic force. In Sec. III we ca
out computer simulations. First, the domain growth probl
is studied in two dimensions. Next, our model is applied
the dynamics of phase separation under simple shear flo
two dimensions. In Sec. IV we summarize results obtained
this study, and discuss a possible model which takes
account the viscoelastic effect for polymer solution system

II. MODEL

A. Two-fluid model

The two-fluid model was introduced by several authors
a phenomenological model to describe the dynamics of p
mer solutions@17–21#. Doi and Onuki@11# generalized it for
mixtures of polymer melts consisting of two kinds of pol
mers with molecular weightsMA and MB . Their model in-
cludes the case of polymer solutions in the limitMB!MA .
This model allows us to describe the dynamics of a quenc
system into the spinodal region, that is, the dynamics
phase separation. We give a brief review of this generali
two-fluid model below.

Consider a mixture of two different kinds of polymersA
and B with degrees of polymerizationNA and NB , respec-
tively. The system is assumed to be isothermal. In the tw
fluid model, the local mass densityrX and the local velocity
vX of polymers, whereX5A or B, obey the following hy-
4416 © 1997 The American Physical Society
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56 4417SMOOTHED-PARTICLE METHOD FOR PHASE . . .
drodynamic equations including friction force terms caus
by the relative motion betweenA andB polymers:

]rX

]t
52¹•~rXvX!, ~1!

rX

DvX

Dt
5fX¹•sX2z~vX2vY!1FX , ~2!

where the variables with indicesX andY are for theA andB
polymers; the time derivativeD/Dt is defined as
(]/]t)1vX•¹; fX is the local volume fraction of polymersX
which is assumed to be equal to the mass fraction, tha
fX5rX /r, wherer5rA1rB is the total density;sX is the
stress tensor;z is the friction coefficient which generally
depends onfX ; FX is the extra force due to polymer ne
works. The stress tensorsX consists of the chemical poten
tial and the viscous stress tensor

sX52~p1mX!11h@~¹v!1~¹v!T#, ~3!

where mX is the chemical potential given by the relatio
mX5dF/dfX with the total free energyF, 1 is the unit ten-
sor, h is the shear viscosity,v[fAvA1fBvB is the local
average velocity of the total fluid, (¹v) and (¹v)T are the
velocity gradient tensor and its transpose, respectively, anp
is the pressure which ensures the incompressibility condi
¹•v50 for the total fluid. The friction coefficientz is given
by @11#

z5
zAzB

zA1zB
, ~4!

with

zX5fX

NX

Ne
z0X ~X5A,B!, ~5!

whereNe is the degree of polymerization between entang
ment points, andz0X is the microscopic friction constant o
polymer X. The extra forceFX is related to the network
stresss(n) which originates from the conformational entrop
of polymer chains,

FX5
zX

zA1zB
¹•s~n!. ~6!

The stress tensors (n) generally depends on the past histo
of the deformation. For a polymer solution, for example,s (n)

would satisfy the following equation if the deformation
spatially homogeneous,

s~n!5E
2`

t

dt8G~ t2t8!k~ t8! ~7!

where G(t) is the stress relaxation function in the line
viscoelastic regime, andk(t) is the traceless part of the sym
metric velocity gradient tensor for the polymers at timet,

that is, k(t)[(¹vA)1(¹vA)T2 2
3 (¹•vA)1 in three-

dimensional space.~Hereafter we use the suffixesA and B
for polymers and solvent in the polymer solution system
d

is,

n

-

,

respectively.! In the case of polymer mixtures, local velocit
vA in Eq. ~7! should be replaced by the tube velocity intr
duced by Brochard@17#, which is given by a linear combi-
nation ofvA andvB . Equations~1!–~7! give a closed set of
equations for$fX% and $vX% if the relaxation functionG(t)
or an appropriate constitutive equation are given.

When the relative velocityvA2vB is small compared with
the average velocityv and its time derivative is negligible
Eqs. ~1! and ~2! are reduced to the hydrodynamic equati
for v and the diffusion equation forfA ~or fB),

r
Dv

Dt
52~fA2fB!¹

dF

dfA
1¹•@P1s~n!#, ~8!

]fA

]t
52¹•~fAv!1¹S 2

z
fA

2fB
2 D •F¹ dF

dfA
2g¹•s~n!G ,

~9!

where P[2p11h@(¹v)1(¹v)T#, and g is the coupling
constant between diffusion and elastic stress which is gi
by

g5
1

zA1zB
S zA

fA
2

zB

fB
D . ~10!

If NA5NB and z0A5z0B , theng vanishes. In such a case
we can expect that the elastic stress plays no important ro
Note that Eqs.~8! and ~9! do not give a complete set o
equations forv andfA becauses (n) generally depends onvA
and vB , and cannot be expressed in terms ofv and fA . In
the absence ofs (n) these equations are almost the sa
equations of the dynamical model for a critical binary flui
the so-called modelH @6#, which has extensively been stud
ied by many researchers, as mentioned in Sec. I.

B. Numerical model

There are many numerical methods to solve the hydro
namic equations~1!, ~2!, and ~7!. Here we adopt the La-
grangian description of fluid dynamics rather than a Euler
description to construct a model. One of numerical meth
based on the Lagrangian description is known as SPH@12# or
smoothed-particle applied mechanics@22#. This method was
used for some problems in astrophysics@12#. Recently,
Posch, Hoover, and Kum@23# discussed a connection wit
molecular dynamics, and applied to the transport problem
Rayleigh-Bénard convection. The Lagrangian description
also useful for some simulations of flows in viscoelastic m
terials @24,25#.

In the SPH method the smoothed densityrs(r ) of the
mass densityr(r ) of fluid at positionr plays a fundamenta
role.rs(r ) is defined by using a smoothing functionW(r ,h),

rs~r !5E W~r2r 8,h!r~r 8!dr 8. ~11!

The kernelW(r ,h) has the following properties@12#:

E W~r ,h!dr51, lim
h→0

W~r ,h!5d~r !. ~12!
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The parameterh defines the smoothing length of the kern
W(r ,h). A typical example ofW(r ,h) is the Gaussian ker
nel, that is,

W~r ,h!5
1

~ph2!d/2
e2r2/h2

, ~13!

whered is the spatial dimension. This smoothing functio
defines a fluid element or a fluid particle with sizeh. If we
choose a set of random pointsr1 ,r2 , . . . ,rN with a probabil-
ity density which is proportional tor(r ), we can evaluate the
integral in Eq.~11! with the Monte Carlo integration method

rs~r !.(
j 51

N

mW~r2r j ,h!, ~14!

wherem[(1/N)*r(r )dr , andN is the total number of sam
pling points. These sampling points are regarded as posit
of fluid particles having massm and sizeh. The physical
quantities~mass, momentum, and energy! of the fluid are
transported by the motion of particles in the SPH. It may
reasonable to choose the correlation length of density fl
tuations as the particle sizeh. The density at the position o
particle i is given byr i[rs(r i). For a given fieldA(r ), its
smoothed fieldAs(r ) is given by

As~r !.(
j 51

N

m
A~r j !

r j
W~r2r j ,h!. ~15!

With these expressions of field quantities, we can derive a
of equations of motion of the fluid particles from the hydr
dynamic partial differential equations. Note that t
smoothed density given by Eq.~14! is differentiable, and the
gradient of density, for example, is expressed as a supe
sition of gradients of the kernel¹W(r2r j ,h). For detailed
procedures of deriving equations of motion of the particl
see Ref.@12#.

Based upon the above picture of the fluid particles,
construct a model for polymer mixtures which will provid
an alternative expression of the two-fluid model described
Sec. II A. Of course we can directly derive equations of m
tion from Eqs.~1! and ~2! through the formal procedure o
SPH method. Here, however, we derive the equations of
tion in some heuristic manner. Let us consider two kinds
particlesA andB whose positions are$r i% ( i 51,2, . . . ,NA)
and$rm% (m51,2, . . . ,NB), respectively, whereNA andNB
are the total number ofA andB particles, respectively. Here
after we use the indicesi , j , . . . andm,n, . . . for A andB
particles, respectively, anda,b, . . . for any particles. The
densitiesrA(r ) andrB(r ) of theA andB fluids, respectively,
are given by

rA~r !5(
j 51

NA

mAW~r2r j ,h!, rB~r !5 (
n51

NB

mBW~r2rn ,h!,

~16!

wheremA[MA /NA andmB[MB /NB , with the total mass
MA andMB of the A and B fluids in the whole system
respectively. The total density is given b
r(r )5rA(r )1rB(r ). It must be noted that in our model th
l
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strict incompressible flow cannot be realized, and here
consider anearly incompressiblefluid. Therefore, small spa
tial variations ofr(r ) should be allowed. We define the loc
velocities of theA and B fluids, vA(r ) and vB(r ), respec-
tively, as

vA~r !5(
j

mA

rA j
ṙ jW~r2r j ,h!,

vB~r !5(
n

mB

rBn
ṙnW~r2rn ,h!, ~17!

where rA j[rA(r j ), rBn[rB(rn), and ṙa[(d/dt)ra is the
velocity of particlea. We also define the average veloci
v(r ),

v~r !5(
b

mb

rb
ṙbW~r2rb ,h!, ~18!

wheremb5mA or mB for particleb of type A or B, respec-
tively, andrb[r(rb).

To derive the equations of motion of particles, we co
struct a Lagrangian and a dissipation function in terms of
variables related to the particles. Although the elastic ene
which causes the extra force in Eq.~2! plays a crucial role in
dynamically asymmetric systems@16# such as polymer solu
tions, here we consider, as a first step, a system in which
elastic force dose not play any significant role. Such a sys
is a polymer blend where the coupling constantg in Eq. ~10!
vanishes as mentioned in Sec. II A. We have also assu
that the system is isothermal. Thus we write the Lagrang
L in the form

L5(
b

mbF1

2
ṙb

22 f ~rb ,fAb ,fBb!G , ~19!

where f (rb ,fAb ,fBb) is the thermodynamic potential o
free energy per unit mass andfAb[rAb /rb and
fBb[rBb /rb are the mass fractions of theA andB fluids,
respectively.

Since we are considering a nearly incompressible flu
we ignore the bulk viscosity of the total fluid. In this cas
the dissipation arises from shearing motion of the fluid a
the ‘‘friction’’ between the two fluids, which is a feature o
the two-fluid model. Hence the dissipation functionR is
given by

R5(
b

mb

rb
hDb :Db1

1

2(b
mb

rb
zb~vA2vB!b

2 , ~20!

whereDb is the traceless part of symmetric velocity gradie
tensor1

2 @(¹v)b1(¹v)b
T#, zb[z(fb), and (•••)b denotes an

estimation of a field quantity atrb . Here we have assume
that both the two polymer meltsA and B have the same
viscosityh. The velocity gradient tensor and the differen
of velocities betweenA andB fluids are written, in the par-
ticle system, as

~¹v!a5(
b

mb

ra
~ ṙb2 ṙa!¹aWab , ~21!
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~vA2vB!a5(
j

mA

rA j
ṙ jWa j2(

n

mB

rBn
ṙnWan , ~22!

where Wab[W(ra2rb ,h) and ¹aWab[(]/]ra)Wab .
Note that¹aWab is given by 22(ra2rb)Wab /h2 for the
Gaussian kernelWab . In actual simulations,ra in Eq. ~21!

is replaced byrab[ 1
2 (ra1rb) for a symmetrical reason

@12,22#.
From Eqs.~19! and ~20!, we can derive the equation o

motion of particlea in the form of the usual Euler-Lagrang
equation in the presence of dissipation,

d

dt

]L
] ṙa

2
]L
]ra

1
]R
] ṙa

50. ~23!

The first term in Eq.~23! yields the acceleration termma r̈a ,
where r̈a[(d2/dt2)ra . The second one is a potential forc
that may be written by

2
]L
]ra

5(
b

mbF S ] f

]r D
b

]rb

]ra
1S ] f

]fA
2

] f

]fB
D

b

]fAb

]ra
G ,

~24!

where the conditionfA1fB51 is used. Noting that
(] f /]r)b5pb /rb

2 , from Eqs.~16! and ~24! we obtain

2
]L
]ra

5(
b

mambS pa1mab

ra
2

1
pb1mba

rb
2 D ¹aWab ,

~25!

where mab[ma or 2ma for particle b of type A or B,
respectively, andma is the chemical potential per unit vo
ume of particlea defined by

ma[
1

2
raF S ] f

]fA
D

a

2S ] f

]fB
D

a
G , ~26!

andpa is an estimation of the pressure fieldp(r ) for the total
fluid at the pointr5ra . In the two-fluid model the pressur
p is determined to keep the incompressibility¹•v50. In our
scheme, however, the strict incompressibility cannot be
isfied, and we regard the pressure as a penalty for the inc
pressibility. Adiabatic approximations using Poisson’s re
tion p}rg with specific heat ratiog are often used in SPH
simulations for compressible flow. Here we use the sim
expression for the pressure. We choose the following sim
form for the pressure, or penalty, function:

pa5p0F S ra

r̄
D 2

21G , ~27!

wherep0 is a positive constant andr̄ is the average mas
density. For the physical argument about possible form
equation of state, see Ref.@22#.

Now we extend the model to incorporate the effect
spatial inhomogeneity offA or fB . We assume that the
chemical potential is derived from an appropriate free ene
functionalF such as Flory–Huggins–de Gennes free ene
@18#. Although asymmetry of the free-energy potential is im
t-
m-
-

r
le

f

f

y
y

-

portant for the systems of polymer solutions@16#, here we
use the symmetric Ginzburg-Landau-type free energy, wh
leads to

ma52eSa1uSa
32K~“

2S!a , ~28!

where S[fA2fB is the order parameter andSa is that
evaluated atra , e is the quench depth, andu and K are
positive constants. Since we are considering nearly inco
pressible fluids, we use the approximatio
(“2S) i.2(“2rA) i /r i and the following expression for th
Laplacian:

~“

2rA! i5(
j

mA

rAi
@~¹rA! j2~¹rA! i #•¹iWi j , ~29!

with

~¹rA! i5(
j

mA¹iWi j , ~30!

where the identityrA“

2rA5¹•(rA¹rA)2(¹rA)2 is used.

In Eq. ~29! rAi is replaced byrAi j[
1
2 (rAi1rA j) in actual

simulations for the same reason as before. For numer
calculations, it is convenient to use the variablesca[rAa or
rBa for particle a of type A or B, respectively, and
Ŝa[2ca /ra21. Using these variables,mab appeared in Eq.
~25! which represents the potential interaction between p
ticles a andb written by

mab5eabm̂a , ~31!

wherem̂a[2eŜa1uŜa
32K(“2Ŝ)a , andeab takes 1 or21

according whether particlesa and b are the same type o
not, respectively. As one can see from Eqs.~25! and~28! or
~31!, the interaction forces between particles depend on
densities or the order parameters at their points. That
different point from usual molecular-dynamics simulation

Calculations of the last term in Eq.~23! are straightfor-
ward. Making use of the propertiesWab5Wba and
¹aWab52¹bWba , we finally obtain the following equa-
tions of motion of particles:

r̈a5(
b

mbS sab

ra
2

1
sba

rb
2 D •¹aWab

7(
b

mb

rbca
zb~vA2vB!bWba , ~32!

where we take the minus~plus! sign in front of the last term
in Eq. ~32! for particlea of type A (B), and the tensorsab
is defined by

sab[2~pa1mab!112hDa . ~33!

This tensorsab is associated with the interaction betwe
particle a and b. The indexab does not mean the tenso
component. Equation~32! corresponds to Eq.~2! in the ab-
sence ofFa and the continuity equation~1! is automatically
satisfied in our model. The last term in Eqs.~32! can be
simplified as
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(
b

mb

rbca
zb~vA2vB!bWba.

za

ca
~vA2vB!a ~34!

if the friction force zb(vA2vB)b and the densityrb do not
largely change in space. We use this expression in the
lowing simulations.

Note that our model is also applicable to low-molecu
binary fluids if we set the friction coefficientza to be con-
stant. A feature of polymeric systems presents only in
dependence ofza on fa in our model.

III. SIMULATIONS AND RESULTS

In order to carry out numerical simulations we must wr
the equations of motion in dimensionless form. In this s
tion all physical quantities are scaled by usingl 0, u0, andr0
which are units of length, velocity, and mass density, resp
tively, and we use the same notations of the dimension
variables as their corresponding dimensionful variables
we scale the energy density byr0u0

2, equations of motion
~32! now become

r̈a5(
b

mbS sab

ra
2

1
sba

rb
2 D •¹aWab7P

za

ca
~vA2vB!a ,

~35!

with the dimensionless tensor

sab52~pa1mab!112R21Da . ~36!

where approximation~34! has been used.R andP in Eqs.
~35! and ~36! are the dimensionless parameters defined a

R[
r0u0l 0

h
, P[

z̃ 0l 0

r0u0
, ~37!

where z̃ 0[z0N/Ne , and z0A5z0B[z0 has been assumed
so thatza in Eq. ~35! is given by (fAfB)a . Our system is
controlled by these two parameters.R and P21 represent
strength of inertia and diffusion of the order parameter,
spectively. Sincez̃ 0 is estimated asz̃ 0;L21, whereL is the
kinetic coefficient of polymers, ratio of the strength of th
above two effects is estimated as

RP;
l 0
2

hL
;S l 0

RG
D 2 Ne

N
, ~38!

whereRG is the gyration radius of a polymer chain. Here w
have used the following estimation,hL;RG

2 N/Ne in the rep-
tation dynamics@13,26#. It should be noted thath should be
regarded as the viscosity of polymer melts~the same viscos
ity of the bothA andB polymers are assumed!, since we are
here considering the polymer blend. In the Rouse dynam
the factor Ne /N in Eq. ~38! is of order unity. Hence
RP;( l 0 /RG)2;1 if we choosel 0;RG . In this study we
consider the above situation. The chemical potential is
sumed to be given by

ma52eSa1Sa
32K̂~“

2S!a , ~39!

and bothK̂ and ueu are fixed at 0.5 in the present study.
l-

r

e

-

c-
ss
If

-

cs

s-

Other parameters are determined as follows. We use
Gaussian kernelW given by Eq.~13!. The particle sizeh is
determined ash5(V/N)1/d51, whereV is the total volume
of the system, and we setN[NA5NB . Note that the inter-
face width,j[(K̂/ueu)1/2, is unity in our system. The aver
age mass densityr̄ is set to be unity. Hence the particle ma
is given by mA5FV/NA , mB5(12F)V/NB , where
F[*rA(r )dr /*r(r )dr is the total mass~or volume! fraction
of A fluid. The pressurepa is now given by

pa5p0~ra
221!. ~40!

Recall that the pressurepa does not mean there are tw
different pressure associated withA and B particles, but
mean thatpa is the pressure at the pointr5ra .

A. Domain growth kinetics

Now we numerically solve Eqs.~35!–~40! under the pe-
riodic boundary conditions. We carry out the simulation o
two-dimensional system withN510 000. The time integra-
tion is done by the fourth-order Runge-Kutta-Gill metho
with a time stepDt50.1. We have a cutoff lengthr c for the
interaction range between particles, and here we setr c53.0.
Initial configurations are created a the following way. W
place A and B particles on a square lattice, and its du
lattice, respectively, and randomize their positions using
uniform random numbers with amplitude 0.5~the lattice
spacing is unity!. The velocities of each particle are set to
zero. From this initial configuration we relax the system d
ing 100 time steps withe520.5 to obtain a disordered stat
After this initial relaxation process we quench, att50, the
system toe50.5. We setp052.0 in Eq. ~40! so that the
nearly incompressible flow is realized. Indeed in the follo
ing simulations the total mass densityra satisfies
0.95,ra,1.05 for every particlea in any time except for
the initial relaxation process.

After the quench the linearly unstable fluctuation mod
rapidly grow, and domain structures emerge. This dom
pattern coarsens in time and the system evolves toward
equilibrium two-phase coexistent state. Some snapshot
the time-evolving pattern withR215P51 andF50.5 are
shown in Fig. 1. In these figures the mass density ofA fluid
is indicated by the gray scale, that is, bright or dark regio
correspond toA- or B-rich regions of the fluid, respectively

Now we define a structure factorI (k,t) as a quantitative
measure of the pattern evolution,

I ~k,t ![^rA~k,t !rA~2k,t !&/E dk^rA~k,t !rA~2k,t !&,

~41!

whererA(k,t) is the Fourier component ofrA(r ) with wave
vector k at time t and ^•••& denotes the ensemble avera
for initial configurations. SincerA(k,t)5 r̂A(k)W(k) from
Eq. ~16!, whereW(k) andr̂A(k) are the Fourier component
of W(r ,h) and r̂A(r )[( jmAd(r2r j ), respectively,I (k,t)
can be calculated by using the method@41# which is familiar
in molecular dynamics simulations. However, we calculat
by using fast Fourier transformation after mappingrA(r )
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given by Eq.~16! onto a square lattice because it takes l
computation time. Here we use a 1282 square lattice.

The first momentk1(t) of the circular averaged structur
factor denoted byI (k,t) (k[uku) defines a characteristi
wave number whose inverse gives the characteristic len
l (t). In Fig. 2, doubly logarithmic plots ofk1(t) for some
runs with different parameters are shown for the c
F50.5. Squares, circles, triangles, and diamonds in this
ure correspond to the runs forR2152.0, 1.0, 0.7, and 0.5
respectively.P is fixed at 1.0 for all runs. ForR21>1.0 we
observe the growth lawk1(t);t2z with z. 1

2 asymptotically

~the solid line in Fig. 2 indicates the slope2 1
2 ). The expo-

nent z increases asR21 decreases. In particular, fo
R2150.5, it seems that there is a crossover of the expon

from z5 1
2 to 2

3 ~the dashed line indicates the slope2 2
3 ).

It is believed that the characteristic lengthl (t) of the do-
mains linearly grows with time in the late stage, that
l (t);t, in three-dimensional binary fluid systems, witho
an inertia effect at critical quench where interconnected
mains with sharp interfaces are formed@2,27,28,30#. How-
ever, Furukawa@30,31# predicted that the phase-separati
dynamics in fluid systems in both two and three dimensi

FIG. 1. Snapshots of the domain pattern att50 ~a!, 50 ~b!, 100
~c!, 200~d!, 300~e!, and 400~f!. The mass density of theA fluid is
shown by gray scales. Bright regions correspond to A-rich doma
R215P51.0 andF50.5.
s

th

e
-

nt

,

-

s

is inevitably affected by the inertia effect in the long-tim
limit and z5 2

3 in that regime, and that in two-dimension
systems there is a crossover from the Brownian coagula

regime (z5 1
2 ) to the inertia-controlled regime (z5 2

3 ). In
fact, a t2/3 growth law has been obtained by the lattice-g
model@32# in three dimensions, and several numerical stu

ies in two-dimensional fluid systems have shown thatz5 1
2 –

2
3 @29,9,10#. Since the parameterR21 controls the inertia, our
result agrees with Furukawa’s prediction. However, t
Brownian coagulation mechanism fort1/2 growth law is not
appropriate here because there is no thermal noise in
system.

Next we examine the dynamic scaling for the structu
factor I (k,t). We plotk1

2(t)I (k,t) versusk/k1(t) in Fig. 3 at
t5250, 300, 350, and 400 with symbolss, h, L, andn,
respectively. These data are obtained by averaging over
independent runs withR215P51.0. This figure suggest
the existence of the dynamic scaling functio
F(x)[k1

2(t)I (k,t) with x[k/k1(t). To see the behavior o
F(x) more precisely we show doubly logarithmic plots

s.

FIG. 2. Double-logarithmic plots ofk1(t), the first moment of
the structure factorI (k,t). The symbolsh, s, n, andL corre-
spond to the runs withR2152.0, 1.0, 0.7, and 0.5, respectively.P

is fixed at 1.0 andF50.5. Solid and dashed lines show the slop
2

1
2 and2

2
3, respectively.

FIG. 3. Scaling plots of the structure factorI (k,t) for
R215P51.0 andF50.5. The symbolss, h, L, andn corre-
spond tot5250, 300, 350, and 400, respectively.
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F(x) in Fig. 4 ~the meanings of the symbols are the same
those in Fig. 3!. Here we have used the data obtained a

‘‘hardening’’ transformation @33# @rA(r )→u„rA(r )2 1
2 …,

u(•••) is the step function# to avoid the effect of finite thick-
ness of interfaces. We see thatF(x) behaves likex4 @34,35#
for small x except for very smallx, where the finite system
size may have an effect, and there is a ‘‘shoulder’’@36# at
x52 –3. It appears that Porod’s law@37# @F(x);x2(d11)#
holds for largex in the long time limit. Solid and dashe
lines in Fig. 4 show the slopes23 and 4, respectively. Thes
features ofF(x) are commonly observed in other comput
simulations @3,4# and experiments@38–40#, although the
present simulation is in two dimensions and we cannot
rectly compare with three-dimensional results.

In Fig. 5 we also show snapshots for the case of o
critical quench,F50.4, andR215P51.0. In this case the
dropletlike pattern grows, and we observe a slower gro
law with exponentz. 1

3 ~Fig. 6!. The droplet growth mainly
occurs by the coalescence between droplets although we
observe the process of evaporation-condensation type
this time, however, it is not clear which mechanism of t
droplet growth is relevant to the growth law in Fig. 6.

B. Phase separation under shear flow

Our model can be applied to phase separation in the p
ence of shear flow by employing the technique of noneq
librium molecular dynamics@41#. Here we use the so-calle
Sllod method@41# for simple shear in a two-dimensiona
system with the Lees-Edwards boundary conditions@41#.
~The ‘‘Sllod’’ method is so named because of its close re
tionship to the Dolls tensor algorithm.! The equations of mo-
tion are now written by

d

dt
r ax5 ṽ ax1r ayġ,

d

dt
r ay5 ṽ ay , ~42!

d

dt
ṽ ax5 f ax2 ṽ ayġ,

d

dt
ṽ ay5 f ay , ~43!

wherer ax (r ay) and ṽ ax ( ṽ ay) are thex (y) component of
position and deviation of velocity from uniform shear of pa

FIG. 4. Double-logarithmic plots ofF(x) after hardening trans
formation. The meanings of the symbols are the same as tho
Fig. 3.
s
r

i-

-

h

lso
At

s-
i-

-

ticle a, respectively,fa[( f ax , f ay) is the right-hand side of

Eq. ~35!, andġ is the shear rate.
The inhomogeneity of the order parameter causes the

cess stress tensorSI , which is expressed as@42,43,13,19#

in

FIG. 5. Snapshots of the pattern att50 ~a!, 100 ~b!, 200 ~c!,
400 ~d!, 600 ~e!, and 800~f! for R215P51.0 andF50.4. The
mass density ofA fluid is shown by gray scales.

FIG. 6. Double-logarithmic plot ofk1(t) for R215P51.0 and
F50.4. The solid line shows the slope2

1
3.
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SI52
K̂

VE dr¹S¹S ~44!

2
K̂

V(
b

mb

rb
~¹S!b~¹S!b . ~45!

We monitor this quantity together with the viscous stressSV,

SV.
2R21

V (
b

mb

rb
Db . ~46!

The total stress tensor is given by the sum of these two st
tensors apart from the isotropic term. The formula Eq.~44!
of the stress tensor is well known for binary fluid syste
with the Ginzburg-Landau-type free energy. A derivation
the formula in our model is shown in the Appendix.

We first apply the shear flow at the disordered st
e520.5 and F50.5. We choose the paramete
R215P51.0, p055.0, N510 000, and ġ51.031022,
which is the same order as the characteristic velocity of p
ticles in the simulation without shear. In Fig. 7,Sxy

I ~circles!
andSxy

V ~squares! are plotted as a function of the shear stra

ġt, whereSmn
I andSmn

V aremn components ofSI and SV,
respectively.Sxy

I is almost zero, andSxy
V fluctuates around

the steady-state valueR21ġ51.031022 as expected. Indee
the time-averaged value ofSxy

V for 0<t<500 is
9.9360.0131023.

Next we impose the shear flow on the systems where
macroscopic domains exist. We let the system grow for 1
time steps and apply the shear withġ51.031022 at t50.
Some snapshots are shown in Fig. 8 forF50.5. We also
show some snapshots for the off-critical case (F50.4) with
ġ51.031022 in Fig. 9. In this case we apply the shear af
3000 time steps of the initial growth process. It is observ
in both cases (F50.5 and 0.4! that the domains are broke
and merge in large strain regime (ġt.1) as pointed out by
Ohta, Nozaki, and Doi@13#. These topological changes o
domains may cause large fluctuations of stressSI . We plot

FIG. 7. Time evolution of the shear stress tensors at disord
state (e520.5,F50.5).Sxy

I andSxy
V are plotted by the symbolsh

and n, respectively, as functions of shear strainġt for

ġ51.031022.
ss

s
f

e

r-

e
0

r
d

the shear stressSxy
I in Fig. 10 and the normal stres

N1[Sxx
I 2Syy

I in Fig. 11 as functions of shear strain fo

ġ50.01 ~circles!, 0.02 ~squares!, and 0.04~diamonds!, and
F50.5. It is difficult to detect the asymptotic steady states
this simulation. In particular, we observe a very slow mo
like a relaxational oscillation inSxy

I with ġ51.031022.
Such a behavior may be caused by the fact that several p
of domains simultaneously merge or coagulate induced
the flow and form large domains as a result. However, t
oscillatory behavior will vanish in the limit of large system
size.

IV. SUMMARY AND DISCUSSION

In this paper, we have constructed our numerical mo
applying the SPH method to the two-fluid model in the a
sence of elastic force, and demonstrated the simulations
the domain growth kinetics and the rheology under sim
shear flow in two dimensions. We have obtained that
dynamic exponentz for the domain growth takes a valu
close to1

2, and that there is a crossover of the exponent fr
z5 1

2 to 2
3 in the low viscosity system. We have confirmed t

dynamic scaling for the structure factor in our model sy

ed

FIG. 8. Snapshots of the system under simple shear flow

ġt50 ~a!, 1.0 ~b!, 2.5 ~c!, 5.0 ~d!, 7.5 ~e!, and 10.0 ~f! for

ġ51.031022, R215P51.0, andF50.5.
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tems. For simulations under shear flow, we have observ
non-steady-state behavior of the excess stress tensor
large fluctuations caused by topological changes of the
mains.

FIG. 9. Snapshots of the system under simple shear flow

ġt50 ~a!, 1.0 ~b!, 2.5 ~c!, 5.0 ~d!, 7.5 ~e!, and 10.0 ~f! for

ġ51.031022, R215P51.0, andF50.4.

FIG. 10. Time evolution of the shear stressSxy
I as functions of

ġt for ġ51.031022 ~circles!, 2.031022 ~squares!, and 4.031022

~diamonds!. R215P51.0 andF50.5.
a
ith
o-

Our model has the advantage of describing macrosco
phenomena of complex fluids with a reduced number of
grees of freedom compared with the molecular-dynam
method. In addition, we can more easily incorporate exter
flows into our model than on-lattice models such as the C
model with hydrodynamic interactions. We believe o
model is useful for rheological studies of phase-separa
systems, although our model is applicable only to fluid s
tems.

In the rest of this section, we discuss how to incorpor
the effect of the network stress into our model. As mention
in the preceding sections, for the dynamically asymme
systems the existence of the network stresss (n) which
causes various viscoelastic effects is essential and we ca
neglect the last term in Eq.~2!.

Here we consider a system of polymer solution, that is
polymers (A fluid! plus solvent (B fluid! system, as a specia
case. In this case the network stresss (n) acts only on the
polymers. Indeed the extra forceFX defined by Eq.~6! be-
comes¹•s (n) or 0 for X5A or B, respectively, in the limit
of NA@NB . We can incorporate this extra-force term b
replacings i j with s i j 1s i

(n) in the equation of motion~32!
for A particlei , wheres i

(n) is the network stress of particlei .
In order to complete our model, it must be supplemented
an appropriate constitutive equation which describes t
evolution ofs (n). One of the simplest model for the const
tutive equation is the Maxwell model with a single relaxati
time. Such a constitutive equation may be expressed
terms of our model, as

d

dt
s i

~n!1Vi
~A!

•s i
~n!1~Vi

~A!
•s i

~n!!T52
1

t
s i

~n!12GeDi
~A! ,

~47!

where Vi
(A)[ 1

2 @(¹vA) i2(¹vA) i
T# is the antisymmetric par

of the velocity gradient tensor, or vorticity tensor, forvA at
r i , Di

(A) is the traceless part of symmetric velocity gradie
tensor forvA at r i , andt andGe are the rheological relax
ation time and the elastic shear modulus, respectively, b
of which generally depend onfA . The last two terms in the
left-hand side of Eq.~47! come from the rigid body rotation

at

FIG. 11. Time evolution of the normal stressN1 as functions of

ġt for ġ51.031022 ~circles!, 2.031022 ~squares!, and 4.031022

~diamonds!. R215P51.0 andF50.5.
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56 4425SMOOTHED-PARTICLE METHOD FOR PHASE . . .
of the A fluid. It is possible to solve numerically the equ
tions for other constitutive model which may generally i
clude time integrals for the history of each particle. Thus
can directly simulate the dynamics of viscoelastic polym
solutions.
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APPENDIX

In this appendix we derive the stress tensorSI @Eq. ~44!#
due to the inhomogeneity of the order parameter from
equation of motion@Eq. ~23!# of particles. Since the orde
parameter or its conjugate field are even under time reve
fluctuations of the order parameter contribute to the rev
ible part of the stress tensor. The dissipative force term
Eq. ~23! does not affectSI , which is a reversible part of the
stress tensor. Therefore, we may start from nondissipa
dynamic equations given by

ma r̈a52
dF

dra
, ~A1!

where F is the total free-energy functional. WhenF is a
functional of the densityr(r ) and the order parameterS(r )
which are given by

r~r !5(
a

maW~r2ra!, ~A2!

S~r !5@rA~r !2rB~r !#/r~r !5(
a

eamaW~r2ra!/r~r !,

~A3!

whereea51 if particle a is of A type, andea521 other-
wise, and Eq.~A1! is rewritten in the following form:

ma r̈a52E dr Fdr~r !

dra

dF

dr~r !
1

dS~r !

dra

dF

dS~r !G . ~A4!

Hereafter we omit the second argument of the smooth
function W(r2ra ,h). Substituting Eqs.~A2! and ~A3! into
Eq. ~A4!, and integrating by parts, we obtain

ma r̈a52E dr FmaW~r2ra!¹
dF

dr~r !

1eamaW~r2ra!¹S 1

r~r !

dF

dS~r ! D G . ~A5!
e
r
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g

Now consider the total force acting on the syste
*dr (]/]t)(rv), whererv is the momentum density. In ou
model,

rv5(
a

ma ṙaW~r2ra!. ~A6!

Hence

E dr
]

]t
~rv!5(

a
E drma@ r̈aW~r2ra!

2 ṙa ṙa•¹W~r2ra!#. ~A7!

From Eqs.~A2!, ~A3!, ~A5!, and~A7! we obtain

E dr F ]

]t
~rv!1¹•~rvv!G

52E dr Fr~r !¹
dF

dr~r !
1@rA~r !2rB~r !#¹

3S 1

r~r !

dF

dS~r ! D G . ~A8!

Here we have used the property*drW(r2ra)51 and
rvv[(ama ṙa ṙaW(r2ra).

If we assume the incompressibility, that is,¹r(r )50, Eq.
~A8! becomes

E dr F ]

]t
~rv!1¹•~rvv!G52E dr @¹p1S¹m#,

~A9!

where p[r(dF/dr) is the pressure andm[dF/dS is the
chemical potential. The last term in Eq.~A9! gives rise to the
excess stress tensor. When the chemical potential is der
from Ginzburg-Landau-type free energy and can be writ
in the form,m5(] f /]S)2K¹2S, with some known function
f (S), the last term in Eq.~A9! can be written as

S¹m5¹S S
] f

]S
2 f 2KS¹2S2

K

2
u¹Su2D1K¹•~¹S¹S!.

~A10!

The first term on the right-hand side of Eq.~A10! only con-
tributes to the isotropic term of the stress tensor, which is
of interest in incompressible flow and can be included in
pressure term. Equations~A9! and ~A10! imply that the ex-
cess stress tensor is given by2K¹S¹S apart from the iso-
tropic term. Therefore, we obtain the stress tensor for
whole the system

SI52
K

VE dr¹S¹S, ~A11!

whereV is the total volume of the system.



.

ev

C

an

s

tat.

-
a

ki-

4426 56TOHRU OKUZONO
@1# T. Hashimoto, Phase Transit.12, 47 ~1988!.
@2# J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Tran-

sitions and Critical Phenomena, edited by C. Domb and J. L
Lebowitz ~Academic, New York, 1983!, Vol. 8.

@3# T. Koga and K. Kawasaki, Physica A196, 389 ~1993!, and
references therein.

@4# A. Shinozaki and Y. Oono, Phys. Rev. E48, 2622~1993!, and
references therein.

@5# D. H. Rothman, Rev. Mod. Phys.66, 1417~1994!, and refer-
ences therein.

@6# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435
~1977!.

@7# Y. Oono and S. Puri, Phys. Rev. A38, 434 ~1988!.
@8# S. Puri and Y. Oono, Phys. Rev. A38, 1542~1988!.
@9# W. J. Ma, A. Maritan, J. R. Banavar, and J. Koplik, Phys. R

A 45, R5347~1992!.
@10# E. Velasco and S. Tuxvaerd, Phys. Rev. Lett.71, 388 ~1993!.
@11# M. Doi and A. Onuki, J. Phys. II2, 1631~1992!.
@12# J. J. Monaghan, Annu. Rev. Astron. Astrophys.30, 543

~1992!, and references therein.
@13# T. Ohta, H. Nozaki, and M. Doi, Phys. Lett. A145, 304

~1990!; J. Chem. Phys.93, 2664~1990!.
@14# M. Doi and T. Ohta, J. Chem. Phys.85, 1242~1991!.
@15# J. F. Olson and D. H. Rothman, J. Stat. Phys.81, 199 ~1995!.
@16# H. Tanaka, Phys. Rev. Lett.71, 3158 ~1993!; J. Chem. Phys.

100, 5323~1994!; Phys. Rev. Lett.76, 787 ~1996!.
@17# F. Brochard and P. G. de Gennes, Macromolecules10, 1157

~1977!.
@18# P. G. de Gennes,Scaling Concepts in Polymer Physics~Cor-

nell University Press, Ithaca, NY, 1979!.
@19# M. Doi, in Dynamics and Patterns in Complex Fluids, edited

by A. Onuki and K. Kawasaki~Springer, Berlin, 1990!.
@20# A. Onuki, J. Phys. Soc. Jpn.59, 3423~1990!; 59, 3427~1990!.
@21# S. T. Milner, Phys. Rev. Lett.66, 1477~1991!.
@22# W. G. Hoover, T. G. Pierce, C. G. Hoover, J. O. Shugart,
.

.

M. Stein, and A. L. Edwards, Comput. Math. Appl.28, 155
~1994!.

@23# H. A. Posch, W. G. Hoover, and O. Kum, Phys. Rev. E52,
1711 ~1995!.

@24# X. F. Yuan, R. C. Ball, and S. F. Edwards, J. Non-Newtoni
Fluid Mech.46, 331 ~1993!; 54, 423 ~1994!.

@25# N. A. Spenley, X. F. Yuan, and M. E. Cates, J. Phys. II6, 551
~1996!.

@26# M. Doi and S. F. Edwards,The Theory of Polymer Dynamic
~Clarendon, Oxford, 1986!.

@27# E. D. Siggia, Phys. Rev. A20, 595 ~1979!.
@28# K. Kawasaki and T. Ohta, Physica A118, 175 ~1983!.
@29# J. E. Farrell and O. T. Valls, Phys. Rev. B42, 2353~1990!.
@30# H. Furukawa, Adv. Phys.34, 703 ~1985!, and references

therein.
@31# H. Furukawa, Physica A204, 237 ~1994!.
@32# C. Appert, J. F. Olson, D. H. Rothman, and S. Zaleski, J. S

Phys.81, 181 ~1995!.
@33# A. Shinozaki and Y. Oono, Phys. Rev. Lett.66, 173 ~1991!.
@34# C. Yeung, Phys. Rev. Lett.61, 1135~1988!.
@35# H. Furukawa, J. Phys. Soc. Jpn.58, 216 ~1989!.
@36# T. Ohta and H. Nozaki, inSpace-Time Organization in Mac

romolecular Fluids, edited by F. Tanaka, M. Doi, and T. Oht
~Springer, Berlin, 1989!.

@37# G. Porod, inSmall Angle X-Ray Scattering, edited by O. Glat-
ter and O. Kratky~Academic, New York, 1982!.

@38# F. S. Bates and P. Wiltzius, J. Chem. Phys.90, 3258~1989!.
@39# M. Takenaka and T. Hashimoto, J. Chem. Phys.96, 6177

~1992!.
@40# K. Kubota, N. Kuwahara, H. Eda, M. Sakazume, and K. Ta

waki, J. Chem. Phys.97, 9291~1992!.
@41# M. P. Allen and D. J. Tildesley,Computer Simulation of

Liquids ~Clarendon, Oxford, 1987!.
@42# K. Kawasaki, Phys. Rev.150, 291 ~1966!.
@43# A. Onuki, Phys. Rev. A35, 5149~1987!.


